Electroclínica

Reparación y restauración electrónica


Deja un comentario

Distribuidor Kramer VM-4HDMI

Distribuidor 1×4 de señal HDMI con lector de datos EDID embebidos. Viene con uno de los peores tipos de avería posibles: un fallo intermitente aleatorio. El sistema se reinicia de manera repetida y aleatoria.

Distribuidor Kramer VM-4HDMI
Distribuidor Kramer VM-4HDMI

Para abrirlo quito la tornillería superior y lateral, quitando las aletas de montaje en rack y levantando la tapa superior. El interior es sencillo. A la izquierda está la fuente de alimentación, una fuente conmutada que genera 5 voltios con estabilización y protección por cortocircuito. A la derecha se encuentra la placa principal, con el microprocesador, los descodificadores HDMI de entrada y salida y circuitos auxiliares. Tras el frontal, la placa de switches y leds de mando.

Interior del Kramer VM-4HDMI
Interior del Kramer VM-4HDMI

Lo primero es comprobar la fuente. Mido tensión de salida, la cual es de 5,07V. Con el osciloscopio compruebo el rizado por si hay un problema de consensadores, con resultado negativo. Por tanto descartando la fuente procedo a comprobar el oscilador que genera la señal de reloj del procesador. Midiendo con el osciloscopio obtengo una señal estable y limpia.

Señal del oscilador del microprocesador
Señal del oscilador del microprocesador

Dado que el micro tiene el reloj correcto procedo a comprobar toda la distribución de señal HDMI. Conecto una entrada y chequeo todas las salidas, las cuales permanecen activas. Descarto por tanto un problema en los buses HDMI, audio, y datos EDID. Mi sospecha se centra entonces en que el microprocesador se resetea de manera aleatoria. La causa puede ser o bien que el micro está defectuoso o bien que el componente que genera la señal Reset está mal.

Placa principal
Placa principal

Descargando la hoja de características del micro, un P89V51RDZ-FA81, localizo el pinout para ver de dónde procede la señal de Reset.

Pinout Microprocesador
Pinout Microprocesador

El pin 9 corresponde a la señal de Reset. Por tanto conecto el osciloscopio en dicho pin para ver exactamente qué sucede con dicha señal. El oscilograma obtenido es bastante esclarecedor.

Pulsos anómalos de Reset
Pulsos anómalos de Reset

Se producen pulsos a la entrada del pin 9 del microprocesador, de manera aleatoria. Esto hace que el micro se reinicie, dando origen a la avería. Siguiendo la pista que conduce al pin 9 deduzco que el componente que genera la señal de Reset es un pequeño integrado SMD con encapsulado SOT23. Aunque la serigrafía del componente no indica nada claro, llego a la conclusión de que se trata de un RT9818H-30GVL. Este integrado tiene como misión chequear la tensión de la fuente y disparar un pulso de Reset cuando ésta ha alcanzado un valor nominal que no comprometa al microprocesador mediante un falso arranque, el cual, dejaría al micro en un estado impredecible de funcionameinto. El esquema sería el siguiente: (NOTA: Con la salvedad de que el pulso que necesita este micro es positivo, y por tanto la resistencia es Pull-Down y está conectada a masa)

Esquema del circuito de Reset
Esquema del circuito de Reset

Teniendo en cuenta que la alimentación es estable y que la salida del integrado en cambio es aleatoria, la deducción es indiscutible: este integrado falla y debe ser substituido.

RT9818H-30GVL
RT9818H-30GVL

La gran odisea en estos casos es encontrar un integrado similar para usarlo como recambio. Me ha sido imposible, ni en el servicio oficial (que consideran este equipo obsoleto y no tienen recambios), ni en distribuidores de componentes internacionales. De todas formas hay un «plan B», que consiste en fabricar yo mismo un circuito que genere el pulso de Reset. Para empezar procedo a extraer el integrado defectuoso con el equipo de soldadura por aire caliente.

Colimado con cinta Kapton.
Colimado con cinta Kapton.

Hago el colimado de la zona con cinta Kapton para proteger componentes adyacentes. Previamente he sacado el microprocesador de su zócalo con el correspondiente equipo de protección antiestática. Añado cinta metálica anticalórica y extraigo el integrado, proyectando un caudal de aire a una temperatura de 365 grados.

Desoldado por aire caliente
Desoldado por aire caliente

Ahora monto el micro y compruebo el distribuidor. Ya no se reinicia, aunque necesita la señal de Reset para arrancar de forma segura. Para generar el pulso de Reset usaré el conocido integrado NE555 en modo monoestable. Usando la fórmula T = 1,1 x R x C calculo los valores de resistencia y condensador para que me haga un pulso de 330 milisegundos. Según las especificaciones del microprocesador, basta un pulso de 50ms para que se genere un Reset. Por otra parte, la fuente tarda unos 200ms en alcanzar la tensión de trabajo definitiva. Por tanto 330ms es un valor suficiente.

Diseño de la placa de Reset
Diseño de la placa de Reset

El diseño de la placa no puede ser más sencillo. El integrado NE555, una resistencia de 470K y un condensador de 1uF. Añadiré un díodo 1N4148 en la salida Reset para evitar algún poco probable pulso de retorno hacia el 555.

Tres imágenes del proceso de fabricación del nuevo control de Reset
Tres imágenes del proceso de fabricación del nuevo control de Reset

Una vez montada la placa del nuevo control de Reset tengo que medir con el osciloscopio cómo se comporta antes de inyectar la señal al microprocesador, para evitar sustos. Compruebo tres cosas: la curva de carga del 555, el pulso de 330ms que genera al iniciar y la curva de descarga cuando se queda sin alimentación. Obtengo los siguientes oscilogramas:

Oscilogramas del 555 en funcionamiento
Oscilogramas del 555 en funcionamiento

El funcionamiento es perfecto y cumple el cometido necesario para substituir al integrado defectuoso. Por tanto, monto el circuito fabricado y lo cableo para que supla al micro de la necesaria señal de Reset. Substituyo uno de los tornillos de la placa base por una tuerca macho-hembra, sobre la cual atornillo la placa del 555. Sueldo los cables a la placa base en el lugar donde quedaba el integrado y los aseguro con cinta Kapton.

Placa de Reset montada y funcionando
Placa de Reset montada y funcionando

Para finalizar conecto el distribuidor durante unas horas (bajo supervisión del osciloscopio y el voltímetro digital) y compruebo que únicamente se inicia al conectarlo. Por tanto la avería queda resuelta y el distribuidor está operativo de nuevo.


4 comentarios

Regulador de tensión integrado a 12V / 1,5A

Para poder usar equipos electrónicos en el coche hay la posibilidad de usar adaptadores de tensión que bajen los 12Vdc de la batería a la tensión de trabajo del equipo en cuestión. Muchos de ellos trabajan por ejemplo a 5Vdc. Se me ha ocurrido integrar un regulador de tensión variable en un conector de mechero, con la idea de poder cambiar la tensión de trabajo a voluntad y así disponer de un solo regulador para casi cualquier dispositivo que desee conectar al coche.
Basándome en el famoso integrado regulador LM317, decido hacer un circuito sencillo y con pocos componentes que me permita integrarlo en un espacio reducido. Como carcasa elijo un antiguo adaptador de tensión de un móvil Nokia, que ya no funciona, y que lleva incorporado el conector de mechero.

Esquema del regulador
Esquema del regulador

El potenciómetro de 5K lineal permitirá regular la tensión de salida desde 1,5Vdc a 12Vdc. Yo usaré una resistencia variable integrada para que ocupe el mínimo espacio. A este esquema añadiré en la entrada de 12V un led que lleva una resistencia de 1K en serie, y que indicará que el regulador está conectado a la toma de mechero satisfactoriamente.

Lo primero que hago es tomar la medida de la placa y cortarla. Elijo fibra de vidrio por si el LM317 se calienta un poco, ya que la baquelita no aguanta tanto la temperatura. En la foto siguiente se puede ver la carcasa exterior en la que irá alojado el circuito impreso.

Placa cortada
Placa cortada

Antes de continuar voy probando cómo queda la placa dentro de la carcasa, limando y ajustando su tamaño hasta que encaje perfectamente. Conviene dejar un poco de espacio para los cables (dos de entrada y dos de salida) y tener en cuenta que el LM317 irá atornillado a la placa, por lo que es necesario un mínimo de sitio para la cabeza del tornillo por la parte inferior del circuito.

Prueba de espacio
Prueba de espacio

Cuando la placa está ajustada y encaja perfectamente procedo al diseño de las pistas y el taladrado. Hay quien dibuja las pistas y al final taladra. Yo lo hago al revés, ya que los taladros me guían para luego pintar las pistas. Así pues procedo a taladrar la placa según un pre-diseño que he hecho en papel.

Placa taladrada
Placa taladrada

Ahora aprovechando la ubicación de los taladros pinto las pistas del circuito impreso. Como tengo el pre-diseño en papel solamente tengo que transcribir el dibujo a la placa. Uso el rotulador especial Decon-Dalo 33, que es el que mejor aguanta los ácidos del proceso de fabricación del circuito.

Placa preparada para el ácido
Placa preparada para el ácido. A su derecha, el pre-diseño en papel.

Ahora preparo el ácido y sumerjo la placa para hacer desaparecer la parte de cobre que no ha sido pintada. Todo el cobre cubierto por el rotulador permanecerá intacto, formando las pistas que luego albergarán los componentes soldados. Una vez el ácido cumpla su cometido pongo la placa a contraluz para observar si todo está correcto.

Placa acabada
Placa acabada

Ahora quito los restos de rotulador con estropajo y abundante agua. Esto permite que pueda montar y soldar todos los componentes. Intento que queden bien pegados a la placa y, en el caso de los condensadores, uso del tipo miniatura, rescatados de despieces de aparatos viejos pero que previamente he comprobado.

Circuito impreso acabado
Circuito impreso acabado

Como puede verse en la foto superior, he dibujado sobre la placa la disposición de componentes y conexiones para evitar errores.

Ahora cableo la entrada, que además lleva un fusible de protección, y la salida. Hago una primera prueba de conexionado para verificar que todo funciona antes de cerrar la carcasa. Muevo la resistencia variable y compruebo que la tensión de salida varía.

Cableado preparado para probar
Cableado preparado para probar

Una vez comprobado el buen funcionamiento del circuito acoplo la carcasa, a la que previemente le he taladrado un orificio para poder ajustar la tensión de salida.

Regulador acabado
Regulador acabado